Output

Scientific output of the project
The research findings are open access: once available, all publications and reports are listed here. The list is updated regularly and as the project progresses.
Software
MATLAB code for performing simulations to quantify transfer times in linear molecular assemblies of Ni-bis(dithiolene) cofactors connected by amino-acid bridges
Georgia Polycarpou, Spiros S. Skourtis (2025)
Scientific publications
A hierarchical nickel organic framework confers high conductivity over long distances in cable bacteria
Filip J. R. Meysman et all (2025)
A novel cable bacteria species with a distinct morphology and genomic potential
Anwar Hiralal, Philip Ley, Jasper R. van Dijk, Cheng Li, Dmitrii Pankratov, Jiji Alingapoyil Choyikutty, Galina Pankratova, Jeanine S. Geelhoed, Diana Vasquez-Cardenas, Clare E. Reimers, Filip J. R. Meysman (2025)
Inactive “Ghost” cells do not affect motility and long-range electron transport in filamentous cable bacteria
Jesper R. van Dijk, Jeanine S. Geelhoed, Nicole Geerlings, Jiji Alingapoyil Choyikutty, Henricus T. S. Boschker, Erik Verbruggen, Filip J. R. Meysman (2025)
Activated electron transfer at zero reorganization energy induced by a fluctuating donor-acceptor coupling
Stephanie Valianti, Spiros S. Skourtis (2025)
Nickel-dithiolene cofactors as electron donors and acceptors in protein hosts
Georgia Polycarpou, Spiros S. Skourtis (2025)
A model analysis of centimeter-long electron transport in cable bacteria
Jasper R. van der Veen, Stephanie Valianti, Herre S. J. van der Zant, Yaroslav M. Blanter, Filip J. R. Meysman (2024)
The organo-metal-like nature of long-range conduction in cable bacteria
Dmitrii Pankratov, Silvia Hidalgo Martinez, Cheryl Karman, Anastasia Gerzhik, Gabriel Gomila, Stanislav Trashin, Henricus T.S. Boschker, Jeanine S. Geelhoed, Dirk Mayer, Karolien De Wael, Filip J.R. Meysman (2024)
Multi-wavelength Raman microscopy of nickel-based electron transport in cable bacteria
Bent Smets, Henricus T. S. Boschker, Maxwell T. Wetherington, Gérald Lelong, Silvia Hidalgo-Martinez, Lubos Polerecky, Gert Nuyts, Karolien De Wael, Filip J. R. Meysman (2024)
Temperature-dependent characterization of long-range conduction in conductive protein fibers of cable bacteria
Jasper R. van der Veen, Silvia Hidalgo Martinez, Albert Wieland, Matteo De Pellegrin, Rick Verweij, Yaroslav M. Blanter, Herre S. J. van der Zant, Filip J. R. Meysman (2024)
Automated scanning dielectric microscopy toolbox for operando nanoscale electrical characterization of electrolyte-gated organic transistors
Shubham Tanwar, Ruben Millan-Solsona, Sara Ruiz-Molina, Marta Mas-Torrent, Adrica Kyndiah, Gabriel Gomila (2024)
Nanoscale operando characterization of electrolyte-gated organic field-effect transistors reveals charge transport bottlenecks
Shubham Tanwar, Ruben Millan-Solsona, Sara Ruiz-Molina, Marta Mas-Torrent, Adrica Kyndiah, Gabriel Gomila (2023)

Related scientific publications
Overview of existing publications from members of the consortium in the field of the project:
Closing the genome of unculturable cable bacteria using a combined metagenomic assembly of long and short sequencing reads
Anwar Hiralal, Jeanine S. Geelhoed, Silvia Hidalgo-Martinez, Bent Smets, Jesper R. van Dijk, Filip J. R. Meysman (2024)
Comparative genomic analysis of nickel homeostasis in cable bacteria
Anwar Hiralal, Jeanine S. Geelhoed, Sinje Neukirchen, Filip J. R. Meysman (2024)
Indications for a genetic basis for big bacteria and description of the giant cable bacterium Candidatus Electrothrix gigas sp. nov.
Jeanine S.Geelhoed , Casper A. Thorup, Jesper J. Bjerg, Lars Schreiber, Lars Peter Nielsen, Andreas Schramm, Filip J. R. Meysman, Ian P.G Marshall (2023)
Efficient long-range conduction in cable bacteria through nickel protein wires
Henricus T. S. Boschker, Perran L. M. Cook Filip J. R. Meysman et al (2021)
A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria
Filip J. R. Meysman, Rob Cornelissen, Stanislav Trashin et al (2019)
The cell envelope structure of cable bacteria
et al (2018)

Impact on the career of young researchers
The following PhD projects have received (full or partial) funding from PRiNGLE:
Computational and theoretical studies of biomolecular charge transfer
Georgia Polycarpou, University of Cyprus, defended on 10 April 2025
Shining light on the electrical network of cable bacteria
Bent Smets, University of Antwerp, defended on 4 July 2024
The charge transport mechanism in cable bacteria
Jasper R. van der Veen, TU Delft, defended on 2 May 2024

Press and media
Once available, press clippings, press releases and promotional material can be found here.
Latest News
Read up on research developments, publications, presentations and more. For more updates, be sure to follow us on LinkedIn.
PRiNGLE is a four-year international project to design a new class of protein materials with tuned electronic properties, investigate and develop integration of these materials into electronics.
This project receives funding from the European Union’s Horizon Europe EIC PathFinder funding scheme with grant agreement No 101046719.
© 2023 PRINGLE PROJECT | Privacy disclaimer